Laboratory courses serve as important gateways to science, technology, engineering, and mathematics education. One of the challenges in assessing laboratory learning is to conduct meaningful and standardized practical exams, especially for large multisection laboratory courses. Laboratory practical exams in life sciences courses are frequently administered by asking students to move from station to station to answer questions, apply knowledge gained during laboratory experiments, interpret data, and identify various tissues and organs using various microscopic and gross specimens.
View Article and Find Full Text PDFMagic-angle spinning (MAS) solid-state NMR (SSNMR) techniques have emerged in recent years for solving complete structures of uniformly labeled proteins lacking macroscopic order. Strategies used thus far have relied primarily on semiquantitative distance restraints, analogous to the nuclear Overhauser effect (NOE) routinely used in solution NMR. Here, we present a complementary approach for using relative orientations of molecular fragments, determined from dipolar line shapes.
View Article and Find Full Text PDFWe present a novel rotational-echo double resonance (REDOR) method for detection of multiple (19)F-(15)N distances in solid proteins. The method is applicable to protein samples containing a single (19)F label, in addition to high levels of (13)C and (15)N enrichment. REDOR dephasing pulses are applied on the (19)F channel during an indirect constant time chemical shift evolution period on (15)N, and polarization is then transferred to (13)C for detection, with high-power (1)H decoupling throughout the sequence.
View Article and Find Full Text PDFWe present a systematic study of proton linewidths in rigid solids as a function of sample spinning frequency and proton density, with the latter controlled by the ratio of protonated and perdeuterated model compounds. We find that the linewidth correlates more closely with the overall proton density (rho(H)) than the size of local clusters of (1)H spins. At relatively high magic-angle spinning (MAS) rates, the linewidth depends linearly upon the inverse MAS rate.
View Article and Find Full Text PDFMagic-angle spinning solid-state NMR (SSNMR) studies of the beta1 immunoglobulin binding domain of protein G (GB1) are presented. Chemical shift correlation spectra at 11.7 T (500 MHz 1H frequency) were employed to identify signals specific to each amino acid residue type and to establish backbone connectivities.
View Article and Find Full Text PDF