Publications by authors named "D Golebiowski"

The use of a helper plasmid to replace adenovirus infection for adeno-associated virus (AAV) manufacturing has been common practice for decades. Adenovirus E4, E2a, and VA RNA genes are sufficient to support efficient AAV replication. In an effort to ensure that all transfected DNA has a functional role in AAV production, deletions were introduced to the E4 and E2a genes to determine if any portions were dispensable.

View Article and Find Full Text PDF

Transient transfection of mammalian cells using plasmid DNA is a standard method to produce adeno-associated virus (AAV) vectors allowing for flexible and scalable manufacture. Typically, three plasmids are used to encode the necessary components to facilitate vector production; however, a dual-plasmid system, termed pDG, was introduced over 2 decades ago demonstrating two components could be combined resulting in comparable productivity to triple transfection. We have developed a novel dual-plasmid system, pOXB, with an alternative arrangement of sequences that results in significantly increased AAV vector productivity and percentage of full capsids packaged in comparison to the pDG dual design and triple transfection.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by the absence of dystrophin, a membrane-stabilizing protein encoded by the gene. Although mouse models of DMD provide insight into the potential of a corrective therapy, data from genetically homologous large animals, such as the dystrophin-deficient golden retriever muscular dystrophy (GRMD) model, may more readily translate to humans. To evaluate the clinical translatability of an adeno-associated virus serotype 9 vector (AAV9)-microdystrophin (μDys5) construct, we performed a blinded, placebo-controlled study in which 12 GRMD dogs were divided among four dose groups [control, 1 × 10 vector genomes per kilogram (vg/kg), 1 × 10 vg/kg, and 2 × 10 vg/kg; = 3 each], treated intravenously at 3 months of age with a canine codon-optimized microdystrophin construct, rAAV9-CK8e-c-μDys5, and followed for 90 days after dosing.

View Article and Find Full Text PDF

ALS-linked mutations induce aberrant conformations within the SOD1 protein that are thought to underlie the pathogenic mechanism of SOD1-mediated ALS. Although clinical trials are underway for gene silencing of , these approaches reduce both wild-type and mutated forms of SOD1. Here, we sought to develop anti-SOD1 nanobodies with selectivity for mutant and misfolded forms of human SOD1 over wild-type SOD1.

View Article and Find Full Text PDF

Recombinant adeno-associated viral (rAAV) vector-based gene therapy has been adapted for use in more than 100 clinical trials. This is mainly because of its excellent safety profile, ability to target a wide range of tissues, stable transgene expression, and significant clinical benefit. However, the major challenge is to produce a high-titer, high-potency vector to achieve a better therapeutic effect.

View Article and Find Full Text PDF