Publications by authors named "D Goldgof"

There is a tendency for object detection systems using off-the-shelf algorithms to fail when deployed in complex scenes. The present work describes a case for detecting facial expression in post-surgical neonates (newborns) as a modality for predicting and classifying severe pain in the Neonatal Intensive Care Unit (NICU). Our initial testing showed that both an off-the-shelf face detector and a machine learning algorithm trained on adult faces failed to detect facial expression of neonates in the NICU.

View Article and Find Full Text PDF

Among patients with early-stage non-small cell lung cancer (NSCLC) undergoing surgical resection, identifying who is at high-risk of recurrence can inform clinical guidelines with respect to more aggressive follow-up and/or adjuvant therapy. While predicting recurrence based on pre-surgical resection data is ideal, clinically important pathological features are only evaluated postoperatively. Therefore, we developed two supervised classification models to assess the importance of pre- and post-surgical features for predicting 5-year recurrence.

View Article and Find Full Text PDF

The progress of incorporating deep learning in the field of medical image interpretation has been greatly hindered due to the tremendous cost and time associated with generating ground truth for supervised machine learning, alongside concerns about the inconsistent quality of images acquired. Active learning offers a potential solution to these problems of expanding dataset ground truth by algorithmically choosing the most informative samples for ground truth labeling. Still, this effort incurs the costs of human labeling, which needs minimization.

View Article and Find Full Text PDF

Microglial cells mediate diverse homeostatic, inflammatory, and immune processes during normal development and in response to cytotoxic challenges. During these functional activities, microglial cells undergo distinct numerical and morphological changes in different tissue volumes in both rodent and human brains. However, it remains unclear how these cytostructural changes in microglia correlate with region-specific neurochemical functions.

View Article and Find Full Text PDF

Histopathological classification in prostate cancer remains a challenge with high dependence on the expert practitioner. We develop a deep learning (DL) model to identify the most prominent Gleason pattern in a highly curated data cohort and validate it on an independent dataset. The histology images are partitioned in tiles (14,509) and are curated by an expert to identify individual glandular structures with assigned primary Gleason pattern grades.

View Article and Find Full Text PDF