Publications by authors named "D Globig"

A reaction microscope (ReMi) has been combined with a magneto-optical trap (MOT) for the kinematically complete investigation of atomic break-up processes. With the novel MOTReMi apparatus, the momentum vectors of the fragments of laser-cooled and state-prepared lithium atoms are measured in coincidence and over the full solid angle. The first successful implementation of a MOTReMi could be realized due to an optimized design of the present setup, a nonstandard operation of the MOT, and by employing a switching cycle with alternating measuring and trapping periods.

View Article and Find Full Text PDF

We present a novel experimental tool allowing for kinematically complete studies of break-up processes of laser-cooled atoms. This apparatus, the 'MOTReMi,' is a combination of a magneto-optical trap (MOT) and a reaction microscope (ReMi). Operated in an ion-storage ring, the new setup enables us to study the dynamics in swift ion-atom collisions on an unprecedented level of precision and detail.

View Article and Find Full Text PDF

An online device is described in which analytes are extracted from a liquid sample by means of in-tube solid-phase microextraction (in-tube SPME), pulse released by rapid heating, and transferred to a gas chromatograph in a fully automated way. Switching of the sample and gas flows as well as the heating of the extraction tube and the valves is controlled by a remote computer system. Results obtained for river water and for aqueous standard solutions of phenanthrene are presented and are compared to the performance of standard SPME.

View Article and Find Full Text PDF

Three different approaches to laser ionization mass spectrometric analysis of aromatic compounds in water samples are described and their performances are compared. Whereas the first two methods are based on direct laser desorption and subsequent laser ionization of either frozen or adsorbed samples in a time-of-flight mass analyzer, the third performs laser ionization in a quadrupole ion-trap into which the sample is transferred from a GC injector via a short piece of capillary tubing. For the laser-desorption method a detection limit in the 100 microg L(-1) range was determined for fluorene in frozen samples.

View Article and Find Full Text PDF

The combination of laser desorption of untreated soil samples and subsequent selective laser ionization followed by time-of-flight mass analysis results in an ultrafast technique for the quantitative detection of aromatic contaminants in soil samples. The method allows for high sample throughput, because the complete measurement is finished within about 1 min. Although the different types of soil investigated (sand, humus, clay) showed differences in the desorption efficiency, none of them produced mass spectrometric interferences when an ionization laser wavelength of 266 nm was used.

View Article and Find Full Text PDF