Purpose: Glioblastoma multiforme (GBM) is the most lethal form of brain cancer with a median survival of only 12 to 15 months. Current standard treatment consists of surgery followed by chemoradiation. The poor survival of patients with GBM is due to aggressive tumor invasiveness, an inability to remove all tumor tissue, and an innate tumor chemo- and radioresistance.
View Article and Find Full Text PDFThe present studies were initiated to determine in greater molecular detail how MEK1/2 inhibitors [PD184352 and AZD6244 (ARRY-142886)] interact with UCN-01 (7-hydroxystaurosporine) to kill mammary carcinoma cells in vitro and radiosensitize mammary tumors in vitro and in vivo and whether farnesyl transferase inhibitors interact with UCN-01 to kill mammary carcinoma cells in vitro and in vivo. Expression of constitutively activated MEK1 EE or molecular suppression of JNK and p38 pathway signaling blocked MEK1/2 inhibitor and UCN-01 lethality, effects dependent on the expression of BAX, BAK, and, to a lesser extent, BIM and BID. In vitro colony formation studies showed that UCN-01 interacted synergistically with the MEK1/2 inhibitors PD184352 or AZD6244 and the farnesyl transferase inhibitors FTI277 and R115,777 to kill human mammary carcinoma cells.
View Article and Find Full Text PDFCancer Biol Ther
October 2006
Taxol (paclitaxel) and Taxotere (docetaxel) are considered as two of the most important anti-cancer chemotherapy drugs. The cytotoxic action of these drugs has been linked to their ability to inhibit microtubule depolymerization, causing growth arrest and subsequent cell death. Studies by a number of laboratories have also linked suppression of MEK1/2 signaling to enhanced Taxol toxicity in vitro and in vivo.
View Article and Find Full Text PDFPrevious studies from our group have demonstrated in vitro that UCN-01 (7-hydroxystaurosporine) and inhibitors of MEK1/2 interact to cause tumor cell death in a wide variety of malignant, but not in nontransformed, cell types. The present studies determined whether UCN-01 and MEK1/2 inhibitors interacted to cause tumor cell death in vivo. In vitro colony formation studies demonstrated that UCN-01 and the MEK1/2 inhibitor PD184352 interacted to synergistically kill human mammary carcinoma cells (MDA-MB-231, MCF7) with similar combination index values.
View Article and Find Full Text PDFTaxol (paclitaxel) and Taxotere (docetaxel) are considered as two of the most important anti-cancer chemotherapy drugs. The cytotoxic action of these drugs has been linked to their ability to inhibit microtubule depolymerization, causing growth arrest and subsequent cell death. Studies by a number of laboratories have also linked suppression of mitogen activated protein kinase (MAPK) signaling to enhanced Taxol toxicity.
View Article and Find Full Text PDF