Objectives: To investigate the performance of a deep learning (DL) model for segmenting cone-beam computed tomography (CBCT) scans taken before and after mandibular horizontal guided bone regeneration (GBR) to evaluate hard tissue changes.
Materials And Methods: The proposed SegResNet-based DL model was trained on 70 CBCT scans. It was tested on 10 pairs of pre- and post-operative CBCT scans of patients who underwent mandibular horizontal GBR.
Clin Biomech (Bristol)
January 2024
This work analyzed the use of Microsoft HoloLens 2 in orthopedic oncological surgeries and compares it to its predecessor (Microsoft HoloLens 1). Specifically, we developed two equivalent applications, one for each device, and evaluated the augmented reality (AR) projection accuracy in an experimental scenario using phantoms based on two patients. We achieved automatic registration between virtual and real worlds using patient-specific surgical guides on each phantom.
View Article and Find Full Text PDF