Preclinical studies of pro-remyelinating therapies for multiple sclerosis tend to neglect the effect of the disease-relevant inflammatory milieu. Interferon-gamma (IFN-γ) is known to suppress oligodendrocyte progenitor cell (OPC) differentiation and induce a recently described immune OPC (iOPC) phenotype characterized by expression of major histocompatibility complex (MHC) molecules. We tested the effects of cladribine (CDB), dimethylfumarate (DMF), and interferon-beta (IFN-β), existing anti-inflammatory therapies for MS, on the IFN-γ-induced iOPC formation and OPC differentiation block.
View Article and Find Full Text PDFChronic activation and dysfunction of microglia have been implicated in the pathogenesis and progression of many neurodegenerative disorders, including Huntington's disease (HD). HD is a genetic condition caused by a mutation that affects the folding and function of huntingtin (HTT). Signs of microglia activation have been observed in HD patients even before the onset of symptoms.
View Article and Find Full Text PDFRecent evidence suggests that the glucagon-like peptide-1 receptor (GLP-1R) agonists have neuroprotective activities in the CNS in animal models of Parkinson's disease, Alzheimer's disease, and multiple sclerosis (MS). This study aimed to investigate whether a novel long-acting GLP-1R agonist, NLY01, could limit demyelination or improve remyelination as occurs in MS using the cuprizone (CPZ) mouse model. Herein, we assessed the expression of GLP-1R on oligodendrocytes in vitro and found that mature oligodendrocytes (Olig2PDGFRa) express GLP-1R.
View Article and Find Full Text PDFDemyelinating disorders of the central nervous system (CNS) occur when myelin and oligodendrocytes are damaged or lost. Remyelination and regeneration of oligodendrocytes can be achieved from endogenous oligodendrocyte precursor cells (OPCs) that reside in the adult CNS tissue. Using a cuprizone mouse model of demyelination, we show that infusion of fractalkine (CX3CL1) into the demyelinated murine brain increases de novo oligodendrocyte formation and enhances remyelination in the corpus callosum and cortical gray matter.
View Article and Find Full Text PDFBackground: Gangliosides are glycosphingolipids highly enriched in the brain, with important roles in cell signaling, cell-to-cell communication, and immunomodulation. Genetic defects in the ganglioside biosynthetic pathway result in severe neurodegenerative diseases, while a partial decrease in the levels of specific gangliosides was reported in Parkinson's disease and Huntington's disease. In models of both diseases and other conditions, administration of GM1-one of the most abundant gangliosides in the brain-provides neuroprotection.
View Article and Find Full Text PDF