Imidazole and oxazole derivatives 1 to 4 were designed and prepared as dipeptide mimetics to replace the Ser-Leu dipeptide sequence of Ro-25-9980 (Ac-(Cha)-RAMA-S-L-NH2), a peptidic inhibitor of antigen binding to major histocompatibility complex (MHC) class II DR molecules linked to rheumatoid arthritis (RA). The most potent analog in binding assays (IC50 = 30 nM in DRB1*0401 binding; 1.6 times as potent as Ro 25-9980) was 16, Ac-(Cha)RAMA-(S)S-psi(oxazole)-L-NH2.
View Article and Find Full Text PDFMolecular features of ligand binding to MHC class II HLA-DR molecules have been elucidated through a combination of peptide structure-activity studies and structure-based drug design, resulting in analogues with nanomolar affinity in binding assays. Stabilization of lead compounds against cathepsin B cleavage by N-methylation of noncritical backbone NH groups or by dipeptide mimetic substitutions has generated analogues that compete effectively against protein antigens in cellular assays, resulting in inhibition of T-cell proliferation. Crystal structures of four ternary complexes of different peptide mimetics with the rheumatoid arthritis-linked MHC DRB10401 and the bacterial superantigen SEB have been obtained.
View Article and Find Full Text PDF