Background: Prescription opioids are responsible for a significant proportion of opioid-related deaths in the United States. Approximately 6% of opioid-naïve patients who receive opioid prescriptions after surgery become chronic opioid users. However, chronic opioid use after bariatric surgery may be twice as common.
View Article and Find Full Text PDFEnsuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure-Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties.
View Article and Find Full Text PDFThe adverse outcome pathway (AOP) concept has gained attention as a way to explore the mechanism of chemical toxicity. In this study, quantitative structure-activity relationship (QSAR) models were developed to predict compound activity toward protein targets relevant to molecular initiating events (MIE) upstream of organ-specific toxicities, namely liver steatosis, cholestasis, nephrotoxicity, neural tube closure defects, and cognitive functional defects. Utilizing bioactivity data from the ChEMBL 33 database, various machine learning algorithms, chemical features and methods to assess prediction reliability were compared and applied to develop robust models to predict compound activity.
View Article and Find Full Text PDFThe recent advancements in machine learning and the new availability of large chemical datasets made the development of tools and protocols for computational chemistry a topic of high interest. In this chapter a standard procedure to develop Quantitative Structure-Activity Relationship (QSAR) models was presented and implemented in two freely available and easy-to-use workflows. The first workflow helps the user retrieving chemical data (SMILES) from the web, checking their correctness and curating them to produce consistent and ready-to-use datasets for cheminformatic.
View Article and Find Full Text PDFBiomed Pharmacother
June 2024