SMCHD1 is an epigenetic regulatory protein known to modulate the targeted repression of large chromatin domains. Diminished SMCHD1 function in muscle fibers causes Facioscapulohumeral Muscular Dystrophy (FSHD2) through derepression of the D4Z4 chromatin domain, an event which permits the aberrant expression of the disease-causing gene DUX4. Given that SMCHD1 plays a broader role in establishing the cellular epigenome, we examined whether loss of SMCHD1 function might affect muscle homeostasis through additional mechanisms.
View Article and Find Full Text PDFIn mammals, most of the genome is transcribed to generate a large and heterogeneous variety of non-protein coding RNAs, that are broadly grouped according to their size. Long noncoding RNAs include a very large and versatile group of molecules. Despite only a minority of them has been functionally characterized, there is emerging evidence indicating long noncoding RNAs as important regulators of expression at multiple levels.
View Article and Find Full Text PDFFacioscapulohumeral muscular dystrophy (FSHD) is one of the most common inherited muscular dystrophies. As part of the FSHD Society's commitment to promote global communication and collaboration among researchers, the Society collaborated with FSHD Europe and convened its 30th annual International Research Congress (IRC) on June 15-16, 2023, in the city of Milan, Italy. Over 240 researchers, clinicians, patients and pharmaceutical company representatives from a wide geographical background participated to hear about the latest developments and breakthroughs in the field.
View Article and Find Full Text PDFTranslocations producing rearranged versions of the transcription factor double homeobox 4 (DUX4-r) are one of the most frequent causes of B cell acute lymphoblastic leukemia (B-ALL). DUX4-r retains the DNA binding domain of wild-type DUX4 but is truncated on the C-terminal transcription activation domain. The precise mechanism through which DUX4-r causes leukemia is unknown, and no targeted therapy is currently available.
View Article and Find Full Text PDF