Publications by authors named "D GARCIN"

Article Synopsis
  • * Researchers developed a new method called Alpha Centauri to monitor immune responses during viral infections, making it easier to test various immune-boosting compounds.
  • * They discovered that a drug called Gilteritinib boosts innate immune responses against SARS-CoV-2 and other RNA viruses, working through a specific pathway involving AXL and IRF7.
View Article and Find Full Text PDF

Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous β-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and β-genus to inhibit the interferon-β (IFNB1) response.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) infection in infancy is associated with increased risk of asthma, except in those with allergic disease at the time of infection. Using house dust mite allergen, we examined the effect of pre-existing atopy on postviral airway disease using Sendai virus in mice, which models RSV infection in humans. Sendai virus drives postviral airway disease in nonatopic mice; however, pre-existing atopy protected against the development of airway disease.

View Article and Find Full Text PDF

-Methyladenosine (mA) is the most abundant internal RNA modification catalyzed by host RNA methyltransferases. As obligate intracellular parasites, many viruses acquire mA methylation in their RNAs. However, the biological functions of viral mA methylation are poorly understood.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (DCs) are reported to induce robust type-I interferon (IFN) response, whereas cDC1 DCs develop moderate type-I IFN response upon TLR9 stimulation. It is very interesting to understand how this signaling under TLR9 is tightly regulated for the induction of type-I IFNs. Here, we report co-repressor protein NCoR1 as the major factor fine-tuning the signaling pathways regulating IFN-β expression under TLR9 in cDC1 DCs.

View Article and Find Full Text PDF