Publications by authors named "D G Presutti"

Background: Lung cancer remains the leading cause of cancer-related death worldwide. Targeted therapies with tyrosine kinase inhibitors (TKIs) result in improvement in survival for non-small cell lung cancer (NSCLC) with activating mutations of the epidermal growth factor receptor (EGFR). Unfortunately, most patients who initially respond to EGFR-TKI ultimately develop resistance to therapy, resulting in cancer progression and relapse.

View Article and Find Full Text PDF

In this work, we present an innovative, high-throughput rotary wet-spinning biofabrication method for manufacturing cellularized constructs composed of highly-aligned hydrogel fibers. The platform is supported by an innovative microfluidic printing head (MPH) bearing a crosslinking bath microtank with a co-axial nozzle placed at the bottom of it for the immediate gelation of extruded core/shell fibers. After a thorough characterization and optimization of the new MPH and the fiber deposition parameters, we demonstrate the suitability of the proposed system for theengineering of functional myo-substitutes.

View Article and Find Full Text PDF
Article Synopsis
  • Increased expression of the uPA system is linked to tumor growth and poor prognosis in several cancers, including thyroid carcinomas, making it a potential target for treatment.
  • WX-340, a specific uPA inhibitor, was tested on aggressive thyroid cancer cells and showed reduced cell adhesion and invasion but increased uPA receptor levels.
  • Despite its effects on cell behavior, WX-340 did not significantly lower tumor growth in animal models, suggesting that targeting uPA might not be enough for effective therapy.
View Article and Find Full Text PDF

Nanozymes, a type of nanomaterial with enzyme-like properties, are a promising alternative to natural enzymes. In particular, transition metal dichalcogenides (TMDCs, with the general formula MX, where M represents a transition metal and X is a chalcogen element)-based nanozymes have demonstrated exceptional potential in the healthcare and diagnostic sectors. TMDCs have different enzymatic properties due to their unique nano-architecture, high surface area, and semiconducting properties with tunable band gaps.

View Article and Find Full Text PDF

In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An in-depth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress.

View Article and Find Full Text PDF