This paper describes the experimental application of long single pulses to strongly inhomogeneously broadened NQR spectral lines, where the pulse length significantly exceeds the transverse relaxation time. ACu NQR resonance in the mineral covellite (CuS) was used as an exemplar for study in this specific regime, which was motivated by the requirement to obtain useful signals in very large volume applications having radiofrequency power limitations. In this study, signal transients that followed the application of the long single pulses were measured over a large range of radiofrequency field strength and pulse width.
View Article and Find Full Text PDFThis work is motivated by the recent developments in online minerals analysis in the mining and minerals processing industry via nuclear quadrupole resonance (NQR). Here we describe a nuclear magnetic resonance (NMR) and NQR study of the minerals tennantite (Cu12As4S13) and tetrahedrite (Cu12 Sb4S13). In the first part NQR lines associated with (75)As in tennantite and (121,123)Sb isotopes in tetrahedrite are reported.
View Article and Find Full Text PDF(75)As NQR spectra and relaxation times of synthetic and natural FeAs2 samples have been studied at variable static magnetic field and temperature. FeAs2 is a well understood diamagnetic semiconductor and occurs as the natural mineral lollingite in selected ore deposits. We observed a spin-spin relaxation time enhancement of up to five in synthetic powders in the presence of a weak external static magnetic field.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
March 2014
The direct measurement and identification of solid state arsenic phases using (75)As NMR is made difficult by the simultaneous conditions of large quadrupole moment and low coordination symmetry in many compounds. However, specific arsenic minerals can efficiently be detected and discriminated via nuclear quadrupolar resonance (NQR). We report on the first NMR and NQR measurements in the natural minerals enargite (Cu3AsS4), niccolite (NiAs), arsenopyrite (FeAsS) and loellingite (FeAs2).
View Article and Find Full Text PDFFor reliable detection of explosives, a combination of methods integrated within a single measurement platform may increase detection performance. However, the efficient field testing of such measurement platforms requires the use of inexplosive simulants that are detectable by a wide range of methods. Physical parameters such as simulant density, elemental composition and crystalline structure must closely match those of the target explosive.
View Article and Find Full Text PDF