Publications by authors named "D G Maranon"

Telomeres are repetitive nucleoprotein complexes at chromosomal termini essential for maintaining genome stability. Telomeric RNA, or TERRA, is a previously presumed long noncoding RNA of heterogeneous lengths that contributes to end-capping structure and function, and facilitates telomeric recombination in tumors that maintain telomere length via the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway. Here, we investigated TERRA in the radiation-induced DNA damage response (DDR) across astronauts, high-altitude climbers, healthy donors, and cellular models.

View Article and Find Full Text PDF

The large amount of viral RNA produced during infections has the potential to interact with and effectively sequester cellular RNA binding proteins, thereby influencing aspects of post-transcriptional gene regulation in the infected cell. Here we demonstrate that the abundant 5' leader RNA region of SARS-CoV-2 viral RNAs can interact with the cellular polypyrimidine tract binding protein (PTBP1). Interestingly, the effect of a knockdown of PTBP1 protein on cellular gene expression is also mimicked during SARS-CoV-2 infection, suggesting that this protein may be functionally sequestered by viral RNAs.

View Article and Find Full Text PDF

There are extensive studies on chromosome morphology and karyotype diversity in primates, yet we still lack insight into genomic instability as a key factor underlying the enormous interspecies chromosomal variability and its potential contribution to evolutionary dynamics. In this sense, the assessment of spontaneous sister chromatid exchange (SCE) frequencies represents a powerful tool for evaluating genome stability. Here, we employed G-banding, fluorescence plus Giemsa (FPG), and chromosome orientation fluorescence in situ hybridization (CO-FISH) methodologies to characterize both chromosome-specific frequencies of spontaneously occurring SCE throughout the genome (G-SCE) and telomere-specific SCE (T-SCE).

View Article and Find Full Text PDF

Kidney tissues from cats with naturally occurring chronic kidney disease (CKD) and adult and senior cats without CKD were assessed to determine whether telomere shortening and nitrosative stress are associated with senescence in feline CKD. The histopathologic assessment of percent global glomerulosclerosis, inflammatory infiltrate, and fibrosis was performed. Senescence and nitrosative stress were evaluated utilizing p16 and iNOS immunohistochemistry, respectively.

View Article and Find Full Text PDF