Significance: Continuous-wave functional near-infrared spectroscopy has proved to be a valuable tool for assessing hemodynamic activity in the human brain in a non-invasively and inexpensive way. However, most of the current processing/analysis methods assume the head is a homogeneous medium, and hence do not appropriately correct for the signal coming from the scalp. This effect can be reduced by considering light propagation in a layered model of the human head, being the Monte Carlo (MC) simulations the gold standard to this end.
View Article and Find Full Text PDFMamoRef is an mammography device that uses near-infrared light, designed to provide clinically relevant information for the screening of diseases of the breast. Using low power continuous wave lasers and a high sensitivity CCD (Charge-coupled device) that captures a diffusely reflected image of the tissue, MamoRef results in a versatile diagnostic tool that aims to fulfill a complementary role in the diagnosis of breast cancer providing information about the relative hemoglobin concentrations as well as oxygen saturation.We present the design and development of an initial prototype of MamoRef.
View Article and Find Full Text PDFThis work presents a method for constructing phantoms suitable for diffuse optical mammography. They are based on Polydimethylsiloxane silicones, with the characteristic of being anthropomorphic, and having similar mechanical and optical properties as a real breast. These phantoms are useful for testing the performance of diffuse optical imaging devices in the near infrared, both in transmittance and reflectance geometries, since they can be constructed containing inclusions, to simulate breast tumors.
View Article and Find Full Text PDFFunctional near infrared spectroscopy (fNIRS) is a valuable tool for assessing oxy- and deoxyhemoglobin concentration changes (Δ[HbO] and Δ[HbR], respectively) in the human brain. To this end, photon pathlengths in tissue are needed to convert from light attenuation to Δ[HbO] and Δ[HbR]. Current techniques describe the human head as a homogeneous medium, in which case these pathlengths are easily computed.
View Article and Find Full Text PDF