Publications by authors named "D G Fricker"

The presubiculum is part of the parahippocampal cortex and plays a fundamental role for orientation in space. Many principal neurons of the presubiculum signal head direction, and show persistent firing when the head of an animal is oriented in a specific preferred direction. GABAergic neurons of the presubiculum control the timing, sensitivity and selectivity of head directional signals from the anterior thalamic nuclei.

View Article and Find Full Text PDF

The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs.

View Article and Find Full Text PDF

The cognitive map is a concept first introduced by Edward Tolman in 1948 to describe the map of the environment stored in the brain. In this review, after a brief mention of the history of this concept, we explore the contributions of place cells and grid cells to the neural basis of the creation and storage of a spatial map. Finally, we discuss how this map is consolidated and stored in the brain.

View Article and Find Full Text PDF

Self-assembled quantum dots (QDs) based on III-V semiconductors have excellent properties for applications in quantum optics. However, the presence of a 2D wetting layer (WL) which forms during the Stranski-Krastanov growth of QDs can limit their performance. Here, we investigate WL formation during QD growth by the droplet epitaxy technique.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the lifetime of PSD95 protein in synapses, crucial for signaling, maintenance, and memory, creating the Protein Lifetime Synaptome Atlas.
  • PSD95 lifetimes vary significantly, with short lifetimes seen in young mice and areas linked to innate behaviors, while long lifetimes are found in regions related to memory, like the cortex and CA1.
  • Interestingly, protein lifetime increases in mouse models of autism and schizophrenia, highlighting its role in synapse diversity and implications for brain development, aging, and neurological disorders.
View Article and Find Full Text PDF