Publications by authors named "D G Childers"

Host recognition of the pathogen-associated molecular pattern (PAMP), β-1,3-glucan, plays a major role in antifungal immunity. β-1,3-glucan is an essential component of the inner cell wall of the opportunistic pathogen . Most β-1,3-glucan is shielded by the outer cell wall layer of mannan fibrils, but some can become exposed at the cell surface.

View Article and Find Full Text PDF

This paper builds on the expansion of urban ecology from a biologically based discipline-ecology in the city-to an increasingly interdisciplinary field-ecology of the city-to a transdisciplinary, knowledge to action endeavor-an ecology for and with the city. We build on this "prepositional journey" by proposing a transformative shift in urban ecology, and we present a framework for how the field may continue this shift. We conceptualize that urban ecology is in a state of flux, and that this shift is needed to transform urban ecology into a more engaged and action based field, and one that includes a diversity of actors willing to participate in the future of their cities.

View Article and Find Full Text PDF

This perspective emerged from ongoing dialogue among ecologists initiated by a virtual workshop in 2021. A transdisciplinary group of researchers and practitioners conclude that urban ecology as a science can better contribute to positive futures by focusing on relationships, rather than prioritizing urban structures. Insights from other relational disciplines, such as political ecology, governance, urban design, and conservation also contribute.

View Article and Find Full Text PDF

The world has become urban; cities increasingly shape our worldviews, relation to other species, and the large-scale, long-term decisions we make. Cities are nature, but they need to align better with other ecosystems to avoid accelerating climate change and loss of biodiversity. We need a science to guide urban development across the diverse realities of global cities.

View Article and Find Full Text PDF