Engineering of fluorescent proteins (FPs) has followed a trend of achieving longer fluorescence wavelengths, with the ultimate goal of producing proteins with both excitation and emission in the near-infrared (NIR) region of the spectrum. Flow cytometers are now almost universally equipped with red lasers, and can now be equipped with NIR lasers as well. Most red-shifted FPs of the GFP-like family are maximally excited by orange lasers (590 to 610 nm) not commonly found on cytometers.
View Article and Find Full Text PDFNoninvasive biomarkers hold important potential for the characterization and purification of stem cells because the addition of exogenous labels, probes, or reporters, as well as the disruption of cell-cell and cell-extracellular matrix interactions, can unintentionally but dramatically alter stem cell state. We recently showed that intensity of the intrinsically fluorescent metabolite, nicotinamide adenine dinucleotide (NADH), fluctuates predictably with changes in stem cell viability and differentiation state. Here, we use multiphoton flow cytometry developed in our laboratory to rapidly and noninvasively characterize and purify populations of intact stem cell aggregates based on NADH intensity and assessed the differentiation capacity of sorted populations.
View Article and Find Full Text PDFWe report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical and morphological localization by determining a complete infrared spectrum for every voxel (millions of spectra determined per sample).
View Article and Find Full Text PDFEmbryoid bodies (EBs) are large (>100 μm) 3D microtissues composed of stem cells, differentiating cells and extracellular matrix (ECM) proteins that roughly recapitulate early embryonic development. EBs are widely used as in vitro model systems to study stem cell differentiation and the complex physical and chemical interactions contributing to tissue development. Though much has been learned about differentiation from EBs, the practical and technical difficulties of effectively probing and properly analyzing these 3D microtissues has limited their utility and further application.
View Article and Find Full Text PDFIncreasingly, invitro culture of adherent cell types utilizes three-dimensional (3D) scaffolds or aggregate culture strategies to mimic tissue-like, microenvironmental conditions. In parallel, new flow cytometry-based technologies are emerging to accurately analyze the composition and function of these microtissues (i.e.
View Article and Find Full Text PDF