Publications by authors named "D Fehrenbacher"

Optical phase noise of femtosecond lasers is analyzed over various steps of broadband nonlinear frequency conversion. The intrinsic phase jitter of our system originates from quantum statistics in the mode-locked oscillator. Supercontinuum generation by four-wave-mixing processes preserves a noise minimum at the optical carrier frequency.

View Article and Find Full Text PDF

Recent demonstrations of passively phase-locked fiber-based combs motivate broadband characterization of the noise associated with the stabilized carrier-envelope offset frequency. In our study, we analyze the phase noise of a 100 MHz Er:fiber system in a wide range spanning from microhertz to the Nyquist frequency. An interferometric detection method enables analysis of the high-frequency output of an f-to-2f interferometer.

View Article and Find Full Text PDF

We generate broadband pulses covering the Yb: and Tm:silica amplification ranges with a passively phase-locked front end based on Er:fiber technology. Full spectral coherence of the octave-spanning output from highly nonlinear germanosilicate bulk fibers is demonstrated. Seeding of a high-power Tm:fiber generates pulses with a clean spectral shape and a bandwidth of 50 nm at a center wavelength of 1.

View Article and Find Full Text PDF

A passively phase-locked laser source based on compact femtosecond Er:fiber technology is introduced. The carrier-envelope offset frequency is set to zero via difference frequency generation between a soliton at a wavelength of 2 μm and a dispersive wave at 860 nm generated in the same highly nonlinear fiber. This process results in a broadband output centered at 1.

View Article and Find Full Text PDF