Publications by authors named "D Farnell"

Objectives: Periodontitis is a serious periodontal infection that damages the soft tissues and bone around teeth and is linked to systemic conditions. Accurate diagnosis and staging, complemented by radiographic evaluation, are vital. This systematic review (PROSPERO ID: CRD42023480552) explores Artificial Intelligence (AI) applications in assessing alveolar bone loss and periodontitis on dental panoramic and periapical radiographs.

View Article and Find Full Text PDF

Delayed diagnosis and treatment resistance result in high pancreatic ductal adenocarcinoma (PDAC) mortality rates. Identifying molecular subtypes can improve treatment, but current methods are costly and time-consuming. In this study, deep learning models were used to identify histologic features that classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained histopathologic slides.

View Article and Find Full Text PDF

Clear cell ovarian carcinoma (CCOC) is an aggressive malignancy affecting younger women. Despite ovarian cancer subtypes having diverse molecular and clinical characteristics, the mainstay of treatment for advanced stage disease remains cytotoxic chemotherapy. Late stage CCOC is resistant to conventional chemotherapy, which means a suboptimal outcome for patients affected.

View Article and Find Full Text PDF

Investigation of histopathology slides by pathologists is an indispensable component of the routine diagnosis of cancer. Artificial intelligence (AI) has the potential to enhance diagnostic accuracy, improve efficiency, and patient outcomes in clinical pathology. However, variations in tissue preparation, staining protocols, and histopathology slide digitization could result in over-fitting of deep learning models when trained on the data from only one center, thereby underscoring the necessity to generalize deep learning networks for multi-center use.

View Article and Find Full Text PDF

Endometrial cancer (EC) has four molecular subtypes with strong prognostic value and therapeutic implications. The most common subtype (NSMP; No Specific Molecular Profile) is assigned after exclusion of the defining features of the other three molecular subtypes and includes patients with heterogeneous clinical outcomes. In this study, we employ artificial intelligence (AI)-powered histopathology image analysis to differentiate between p53abn and NSMP EC subtypes and consequently identify a sub-group of NSMP EC patients that has markedly inferior progression-free and disease-specific survival (termed 'p53abn-like NSMP'), in a discovery cohort of 368 patients and two independent validation cohorts of 290 and 614 from other centers.

View Article and Find Full Text PDF