Due to their outstanding elastic limit, biocompatible Ti-based bulk metallic glasses (BMGs) are candidate materials to decrease the size of medical implants and therefore reduce their invasiveness. However, the practical use of classical Ti-BMGs in medical applications is in part hindered by their high copper content: more effort is thus required to design low-copper Ti-BMGs. In this work, in line with current rise in AI-driven tools, machine learning (ML) approaches, a neural-network ML model is used to explore the glass-forming ability (GFA) of unreported low-copper compositions within the biocompatible Ti-Zr-Cu-Pd system.
View Article and Find Full Text PDFThe formation of a white etching layer (WEL), a very hard and brittle phase on the rail surface, is associated with a progressive transformation of the pearlitic grain to very fragmented grains due to the cumulative passage of trains. Its formation is associated with a complex thermomechanical coupling. To predict the exact conditions of WEL formation, a thermomechanical model previously proposed by the authors needs to be validated.
View Article and Find Full Text PDFDue to growing demand for metal-free dental restorations, dental ceramics, especially dental zirconia, represent an increasing share of the dental implants market. They may offer mechanical performances of the same range as titanium ones. However, their use is still restricted by a lack of confidence in their durability and, in particular, in their ability to resist hydrothermal ageing.
View Article and Find Full Text PDFCasting of metallic glasses (MG) sometimes induces surface crystallisation despite the fact that the surface is expected to be the region where the cooling rate is the highest. This phenomenon has been observed on various MG, even for those with large critical diameters. Such surface crystallisation can be detrimental when the target applications are focused on surface properties, such as corrosion resistance for biomedical applications.
View Article and Find Full Text PDFThis study investigates the influence of a rapid heat treatment followed by water-quenching on the mechanical properties of Ti6Al4V ELI alloy to improve its strength for use in implants. Prior to the experiment, a dilatometry test was performed to understand the progressive α-to β-phase transformation taking place during heating. The results were then used to carry out heat treatments.
View Article and Find Full Text PDF