Publications by authors named "D F Nechaev"

Objectives: Sensitivity to the gliding of ripples in rippled-spectrum signals was measured in both normal-hearing and hearing-impaired listeners.

Methods: The test signal was a 2 oct wide rippled noise centered at 2 kHz, with the ripples gliding downward along the frequency scale. Both the gliding velocity and ripple density were frequency-proportional across the signal band.

View Article and Find Full Text PDF

Short-latency auditory-evoked potentials (AEPs) were recorded non-invasively in the bottlenose dolphin Tursiops truncatus. The stimuli were two sound clicks that were played either monaurally (both clicks to one and the same acoustic window) or dichotically (the leading stimulus (masker) to one acoustic window and the delayed stimulus (test) to the other window). The ratio of the levels of the two stimuli was 0, 10, or 20 dB (at 10 and 20 dB, the leading stimulus was of a higher level).

View Article and Find Full Text PDF

GaN/AlN heterostructures with thicknesses of one monolayer (ML) are currently considered to be the most promising material for creating UVC light-emitting devices. A unique functional property of these atomically thin quantum wells (QWs) is their ability to maintain stable excitons, resulting in a particularly high radiation yield at room temperature. However, the intrinsic properties of these excitons are substantially masked by the inhomogeneous broadening caused, in particular, by fluctuations in the QWs' thicknesses.

View Article and Find Full Text PDF

This article describes GaN/AlN heterostructures for ultraviolet-C (UVC) emitters with multiple (up to 400 periods) two-dimensional (2D)-quantum disk/quantum well structures with the same GaN nominal thicknesses of 1.5 and 16 ML-thick AlN barrier layers, which were grown by plasma-assisted molecular-beam epitaxy in a wide range of gallium and activated nitrogen flux ratios (Ga/N*) on -sapphire substrates. An increase in the Ga/N* ratio from 1.

View Article and Find Full Text PDF

Forward masking was investigated by the auditory evoked potentials (AEP) method in a bottlenose dolphin Tursiops truncatus using stimulation by two successive acoustic pulses (the masker and test) projected from spatially separated sources. The positions of the two sound sources either coincided with or were symmetrical relative to the head axis at azimuths from 0 to ± 90°. AEPs were recorded either from the vertex or from the lateral head surface next to the auditory meatus.

View Article and Find Full Text PDF