Publications by authors named "D Evain-Brion"

Placental development is particularly altered in trisomy of chromosome 21 (T21)-affected pregnancies. We previously described in T21-affected placentae an abnormal paracrine crosstalk between the villus mesenchymal core and villus trophoblasts. T21-affected placentae are known to be characterized by their hypovascularity.

View Article and Find Full Text PDF

Introduction The use of paclitaxel in pregnant cancer patients is feasible in terms of fetal safety, but little is known about the effects of paclitaxel on the placenta. Using three experimental models, we aimed to assess the effects of paclitaxel on the expression of placental drug transporters. Methods In the in vitro model (human primary trophoblast culture), trophoblasts were isolated from normal term placentas and subsequently exposed to paclitaxel.

View Article and Find Full Text PDF

Homeobox genes regulate embryonic and placental development, and are widely expressed in the human placenta, but their regulatory control by DNA methylation is unclear. DNA methylation analysis was performed on human placentae from first, second and third trimesters to determine methylation patterns of homeobox gene promoters across gestation. Most homeobox genes were hypo-methylated throughout gestation, suggesting that DNA methylation is not the primary mechanism involved in regulating HOX genes expression in the placenta.

View Article and Find Full Text PDF

Background: Small for gestational age (SGA) infants are at increased risk for preterm birth morbidities as well as a range of adverse perinatal outcomes that result in part from associated premature birth. We sought to evaluate the costs of SGA versus appropriate for gestational age (AGA) infants in France from pregnancy through the first year of life and separate the contributions of prematurity from the contribution of foetal growth on costs.

Methods: This is a cross-sectional population-based study using national hospital discharge data from French public and private hospitals.

View Article and Find Full Text PDF

Placental functioning relies on the appropriate differentiation of progenitor villous cytotrophoblasts (CTBs) into extravillous cytotrophoblasts (EVCTs), including invasive EVCTs, and the multinucleated syncytiotrophoblast (ST) layer. This is accompanied by a general move away from a proliferative, immature phenotype. Genome-scale expression studies have provided valuable insight into genes that are associated with the shift to both an invasive EVCT and ST phenotype, whereas genome-scale DNA methylation analysis has shown that differentiation to ST involves widespread methylation shifts, which are counteracted by low oxygen.

View Article and Find Full Text PDF