Mast cells (MCs) are granular cells of the innate immune system which develop from CD34/CD117 progenitors and play a role in orchestrating adaptive immune responses. They have a well-known role in allergic reactions following immunoglobulin (Ig)E-mediated activation of the cell-surface expressed IgE high-affinity receptor (FcεRI). MCs can also respond to various other stimuli due to the expression of a variety of receptors including toll-like receptors (TLRs), immunoglobulin (IgG) receptors (FcγR), complement receptors such as C5a (CD88) expressed by skin MCs, neuropeptides receptors including nerve growth factor receptor, (NGFR), cytokines receptors such as (IL)-1R and IL-3R, and chemokines receptors including CCR-1 and CCR-3.
View Article and Find Full Text PDFEarly mast cell (MC) infiltration has been reported in a wide range of human and animal tumors particularly malignant melanoma and breast and colorectal cancer. The consequences of their presence in the tumor microenvironment (TME) or at their margins still remain unclear as it is associated with a good or poor prognosis based on the type and anatomical site of the tumor. Within the tumor, MC interactions occur with infiltrated immune cells, tumor cells, and extracellular matrix (ECM) through direct cell-to-cell interactions or release of a broad range of mediators capable of remodeling the TME.
View Article and Find Full Text PDFMast cells (MCs), apart from their classic role in allergy, contribute to a number of biologic processes including wound healing. In particular, two aspects of their histologic distribution within the skin have attracted the attention of researchers to study their wound healing role; they represent up to 8% of the total number of cells within the dermis and their cutaneous versions are localized adjacent to the epidermis and the subdermal vasculature and nerves. At the onset of a cutaneous injury, the accumulation of MCs and release of proinflammatory and immunomodulatory mediators have been well documented.
View Article and Find Full Text PDFMast cells (MCs) are physiologically activated by binding of stem cell factor (SCF) to the extracellular domains of the Kit receptor. This binding increases the proliferation and prolongs the survival of normal mature MCs, as well as intensifies the release of mediators. In mastocytosis, somatic mutations of the coding Kit gene cause autocrine dysregulation and lead to constitutive KIT activation even in the absence of its ligand SCF.
View Article and Find Full Text PDFCurr Allergy Asthma Rep
August 2016
Purpose Of Review: CHI3L1 (also known as YKL-40), a member of "mammalian chitinase-like proteins," is a serum protein lacking enzymatic activity. Although the protein is highly conserved in mammals, a consensus regarding its role in human pathologies is currently lacking. In an attempt to shed light on the many physiological functions of the protein, specifically with regard to asthma, a comprehensive overview of recent studies is provided.
View Article and Find Full Text PDF