Breast cancer progression involves intricate interactions between cancer cells and the tumor microenvironment (TME). This study elucidates the critical role of progesterone receptor (PR) signaling in mediating the protumorigenic effects of cancer-associated fibroblasts (CAFs) on estrogen receptor-positive (ER+) luminal breast cancer cells. We demonstrate that CAFs produce physiologically relevant levels of estrogen and progesterone, which significantly contribute to breast cancer tumorigenicity.
View Article and Find Full Text PDFBackground: Cancer-associated fibroblasts (CAFs) are recruited to the tumor microenvironment (TME) and are critical drivers of breast cancer (BC) malignancy. Circulating tumor cells (CTCs) travel through hematogenous routes to establish metastases. CTCs circulate both individually and, more rarely, in clusters with other cell types.
View Article and Find Full Text PDFMetastasis-related complications account for the overwhelming majority of breast cancer mortalities. Triple negative breast cancer (TNBC), the most aggressive breast cancer subtype, has a high propensity to metastasize to distant organs, leading to poor patient survival. The forkhead transcription factor, FOXM1, is especially upregulated and overexpressed in TNBC and is known to regulate multiple signaling pathways that control many key cancer properties, including proliferation, invasiveness, stem cell renewal, and therapy resistance, making FOXM1 a critical therapeutic target for TNBC.
View Article and Find Full Text PDFLiquid biopsies represent an attractive, minimally-invasive alternative to surgical sampling or complex imaging of breast cancer and breast cancer metastasis. Here we present a summary of the major biomarker components often evaluated in liquid biopsy samples from patients with breast cancer, including circulating tumor cells, circulating cell-free tumor DNA, and cancer-associated plasma proteins. We discuss recent advancements in methods of detection and use of these biomarkers in breast cancer.
View Article and Find Full Text PDF