Publications by authors named "D E Shipilo"

At the selected frequencies from 0.3 to 10 THz we measured the two-dimensional (2D) distributions of fluence and polarization of terahertz (THz) emission from a single-color femtosecond filament. At the majority of frequencies studied, the THz beam has a donut-like shape with azimuthal modulations and radial polarization.

View Article and Find Full Text PDF

The terahertz (THz) radiation emitted by an air-based femtosecond filament biased by a static electric field is known to have on-axis shape and relatively low frequency spectrum in contrast to the unbiased single-color and two-color schemes. Here, we measure the THz emission of a 15-kV/cm-biased filament in air produced by a 740-nm, 1.8-mJ, 90-fs pulse and demonstrate that a flat-top on-axis THz angular distribution of the emission at 0.

View Article and Find Full Text PDF

High-intensity (∼1 TW/cm2 and higher) region formed in the propagation of ∼60 GW, 90 fs Ti:Sapphire laser pulse on a ∼100 m path in air spans for several tens of meters and includes a plasma filament and a postfilament light channel. The intensity in this extended region is high enough to generate an infrared supercontinuum wing and to initiate laser-induced discharge in the gap between the electrodes. In the experiment and simulations, we delay the high-intensity region along the propagation direction by inserting metal-wire meshes with square cells at the laser system output.

View Article and Find Full Text PDF

In the experiment, the laser pulse (744 nm, 0.5 mJ, 90 fs) focused into the air gap between the plane electrodes biased by a 10 kV/cm field (DC-biased filament) produced terahertz (THz) radiation. At the selected frequencies of =0.

View Article and Find Full Text PDF

Pulses at 744 nm with 90 fs duration, 6 mJ energy, and a weakly divergent wavefront propagate for more than 100 m and generate a filament followed by an unprecedently long high intensity (≥1/) light channel. Over a 20 m long sub-section of this channel, the pulse energy is transferred continuously to the infrared wing, forming spectral humps that extend up to 850 nm. From 3D+time carrier-resolved simulations of 100 m pulse propagation, we show that spectral humps indicate the formation of a train of femtosecond pulses appearing at a predictable position in the propagation path.

View Article and Find Full Text PDF