Publications by authors named "D E Pearse"

Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them.

View Article and Find Full Text PDF

Background Aims: In this article we aimed to provide an expert synthesis of the current status of Schwann cell (SC)therapeutics and potential steps to increase their clinical utility.

Methods: We provide an expert synthesis based on preclinical, clinical and manufacturing experience.

Results: Schwann cells (SCs) are essential for peripheral nerve regeneration and are of interest in supporting axonal repair after spinal cord injury (SCI).

View Article and Find Full Text PDF

Schwann cells are essential for the maintenance and function of motor neurons, axonal networks, and the neuromuscular junction. In amyotrophic lateral sclerosis, where motor neuron function is progressively lost, Schwann cell function may also be impaired. Recently, important signaling and potential trophic activities of Schwann cell-derived exosomal vesicles have been reported.

View Article and Find Full Text PDF

Multiple studies in a range of taxa have found links between structural variants and the development of ecologically important traits. Such variants are becoming easier to find due, in large part, to the increase in the amount of genome-wide sequence data in nonmodel organisms. The salmonids (salmon, trout, and charr) are a taxonomic group with abundant genome-wide datasets due to their importance in aquaculture, fisheries, and variation in multiple ecologically important life-history traits.

View Article and Find Full Text PDF

Subacute spinal cord injury (SCI) displays a complex pathophysiology associated with pro-inflammation and ensuing tissue damage. Microglia, the resident innate immune cells of the CNS, in concert with infiltrating macrophages, are the primary contributors to SCI-induced inflammation. However, subpopulations of activated microglia can also possess immunomodulatory activities that are essential for tissue remodeling and repair, including the production of anti-inflammatory cytokines and growth factors that are vital for SCI recovery.

View Article and Find Full Text PDF