Müllerian inhibiting substance/anti-Müllerian hormone (MIS/AMH) has been suggested as a biotherapeutic agent in gynecological cancers that highly express the MIS/AMH type II receptors (MISRII/AMHRII) but the anticancer mechanisms by which MIS/AMH acts are not fully understood. Our experiments show that MIS/AMH inhibits ovarian cancer by deregulating the Wnt signal pathway via the β-catenin interacting protein (ICAT). MIS/AMH inhibition of ICAT by small interfering RNAs (siRNA) decreased ICAT driven ovarian cancer cell viability as measured by the methylthiazoltetrazolium assay, reversed cell cycle arrest and annexin V expression and diminished migration by scratch wound assay.
View Article and Find Full Text PDFThe temporal magnetic correlations of the triangular-lattice antiferromagnet NiGa_{2}S_{4} are examined through 13 decades (10^{-13}-1 sec) using ultrahigh-resolution inelastic neutron scattering, muon spin relaxation, and ac and nonlinear susceptibility measurements. Unlike the short-ranged spatial correlations, the temperature dependence of the temporal correlations show distinct anomalies. The spin fluctuation rate decreases precipitously upon cooling towards T^{*}=8.
View Article and Find Full Text PDFMüllerian inhibiting substance (MIS) has been shown to inhibit growth of a number of tumors in vitro and/or in vivo, but the downstream pathways which it regulates are not fully understood. In the present study we show that MIS type II receptor was highly expressed in AN3CA cells, a cell line derived from human endometrial cancer cell in which MIS-treatment caused a reduction of cell viability, and induced cellular apoptosis and genes involved cell cycle arrest. To understand the genome-wide effects of MIS on gene regulation, we performed serial gene expression analyses from 0 to 96 h at 24 h intervals after treating AN3CA cells with MIS.
View Article and Find Full Text PDFThe formation of heavy-fermion bands can occur by means of the conversion of a periodic array of local moments into itinerant electrons via the Kondo effect and the huge consequent Fermi-liquid renormalizations. Leggett predicted for liquid (3)He that Fermi-liquid renormalizations change in the superconducting state, leading to a temperature dependence of the London penetration depth Λ quite different from that in BCS theory. Using Leggett's theory, as modified for heavy fermions, it is possible to extract from the measured temperature dependence of Λ in high quality samples both Landau parameters F(0)(s) and F(1)(s); this has never been accomplished before.
View Article and Find Full Text PDF