Publications by authors named "D E Leckband"

Crowded environments and confinement alter the interactions of adhesion proteins confined to membranes or narrow, crowded gaps at adhesive contacts. Experimental approaches and theoretical frameworks were developed to quantify protein binding constants in these environments. However, recent predictions and the complexity of some protein interactions proved challenging to address with prior experimental or theoretical approaches.

View Article and Find Full Text PDF

Proteins are commonly encapsulated in alginate gels for drug delivery and tissue-engineering applications. However, there is limited knowledge of how encapsulation impacts intrinsic protein properties such as folding stability or unfolding kinetics. Here, we use fast relaxation imaging (FReI) to image protein unfolding in situ in alginate hydrogels after applying a temperature jump.

View Article and Find Full Text PDF

A prototype of cross-membrane signal transduction is that extracellular binding of cell surface receptors to their ligands induces intracellular signalling cascades. However, much less is known about the process in the opposite direction, called inside-out signalling. Recent studies show that it plays a more important role in regulating the functions of many cell surface receptors than we used to think.

View Article and Find Full Text PDF

Polymers designed to stabilize proteins exploit direct interactions or crowding, but mechanisms underlying increased stability or reduced aggregation are rarely established. Alginate is widely used to encapsulate proteins for drug delivery and tissue regeneration despite limited knowledge of its impact on protein stability. Here, we present evidence that alginate can both increase protein folding stability and suppress the aggregation of unfolded protein through direct interactions without crowding.

View Article and Find Full Text PDF

Increased tension on VE-cadherin (VE-cad) complexes activates adaptive cell stiffening and local cytoskeletal reinforcement--two key signatures of intercellular mechanotransduction. Here we demonstrate that tugging on VE-cad receptors initiates a cascade that results in downstream integrin activation. The formation of new integrin adhesions potentiates vinculin and actin recruitment to mechanically reinforce stressed cadherin adhesions.

View Article and Find Full Text PDF