J Auton Pharmacol
February 2001
1. Adenosine 5' triphosphate (ATP) (0.5-500 microM) or muscarine (0.
View Article and Find Full Text PDFThe effect of external calcium concentration ([Ca2+]o) on membrane potential-dependent calcium signals in isolated tiger salamander rod and cone photoreceptor inner segments was investigated with patch-clamp and calcium imaging techniques. Mild depolarizations led to increases in intracellular Ca2+ levels ([Ca2+]i) that were smaller when [Ca2+]o was elevated to 10 mM than when it was 3 mM, even though maximum Ca2+ conductance increased 30% with the increase in [Ca2+]o. When external calcium was lowered to 1 mM [Ca2+]o, maximum Ca2+ conductance was reduced, as expected, but the mild depolarization-induced increase in [Ca2+]i was larger than in 3 mM [Ca2+]o.
View Article and Find Full Text PDFJ Auton Nerv Syst
December 1997
The concentration-dependence of the effect of muscarine on M-current (IM) and the underlying M-conductance (gM) in B-cells of bullfrog sympathetic ganglion was examined using whole-cell recording techniques. High concentrations of muscarine (> or = 200 nM) produced the classical suppression and over-recovery of steady-state IM at -30 mV. By contrast, low concentrations of muscarine (< or = 30 nM) shifted the gM activation curve to more negative potentials, increased the activation time constant (tau a) and increased steady-state IM.
View Article and Find Full Text PDFAn M-like K+ current (IKx) helps set the rod photoreceptor resting potential and accelerates the response to dim light. Recorded with ruptured-patch whole cell techniques, the amplitude of IKx diminished, and activation occurred at increasingly negative potentials as a function of time. In contrast, IKx was stable during nystatin perforated-patch recording.
View Article and Find Full Text PDFAccording to the classical calcium hypothesis of synaptic transmission, the release of neurotransmitter from presynaptic terminals occurs through an exocytotic process triggered by depolarization-induced presynaptic calcium influx. However, evidence has been accumulating in the last two decades indicating that, in many preparations, synaptic transmitter release can persist or even increase when calcium is omitted from the perfusing saline, leading to the notion of a "calcium-independent release" mechanism. Our study shows that the enhancement of synaptic transmission between photoreceptors and horizontal cells of the vertebrate retina induced by low-calcium media is caused by an increase of calcium influx into presynaptic terminals.
View Article and Find Full Text PDF