Gfi-1B is a transcriptional repressor essential for the regulation of erythropoiesis and megakaryopoiesis. Here we identify Gfi-1B p32, a Gfi-1B isoform, as essential for erythroid differentiation. Gfi-1B p32 is generated by alternative splicing and lacks the two first zinc finger domains of the protein.
View Article and Find Full Text PDFObjective: LYL-1 is a transcription factor containing a basic helix-loop-helix motif closely related to SCL/TAL-1, a regulator of erythroid differentiation. Because LYL-1 is expressed in erythroid cell populations, we addressed its role in erythropoiesis using knockin mice.
Materials And Methods: Erythropoiesis of LYL-1(-/-) mice was studied by progenitor assays, flow cytometry, reconstitution assays, and functional tests.
Growth factor independence-1B (Gfi-1B) is a transcriptional repressor essential for erythropoiesis and megakaryopoiesis. Targeted gene disruption of GFI1B in mice leads to embryonic lethality resulting from failure to produce definitive erythrocytes, hindering the study of Gfi-1B function in adult hematopoiesis. We here show that, in humans, Gfi-1B controls the development of erythrocytes and megakaryocytes by regulating the proliferation and differentiation of bipotent erythro-megakaryocytic progenitors.
View Article and Find Full Text PDFGfi-1B is a transcriptional repressor that is crucial for erythroid differentiation: inactivation of the GFI1B gene in mice leads to embryonic death due to failure to produce differentiated red cells. Accordingly, GFI1B expression is tightly regulated during erythropoiesis, but the mechanisms involved in such regulation remain partially understood. We here identify HMGB2, a high-mobility group HMG protein, as a key regulator of GFI1B transcription.
View Article and Find Full Text PDFGrowth Factor Independent-1B (Gfi-1B) is a transcriptional repressor that plays critical roles in the control of erythropoiesis and megakaryopoiesis. Gfi-1B expression was described to be repressed by an autoregulatory feedback control loop. Here, we show that Gfi-1 transcription is positively regulated early after induction of erythroid differentiation and remains highly active to late erythroblasts.
View Article and Find Full Text PDF