The consequences of heat stress during the dry period can extend into the postpartum period, affecting health and productivity in the subsequent lactation. We hypothesized that cows with distinct core body temperatures (CBTs) would exhibit disparate behaviors associated with different degrees of heat generation or dissipation. The primary objective was to investigate behavioral differences of dry Holstein cows ( = 50) classified as high-temperature (HT) or low-temperature (LT), based on median CBT during the summer months using visual observations and accelerometer technology.
View Article and Find Full Text PDFOur overarching objective was to characterize associations between genomic merit for fertility and the reproductive function of lactating dairy cows in a prospective cohort study. In this manuscript, we present results of the association between genomic merit for fertility and indicators of metabolic status and inflammation, uterine health, endocrine status, response to synchronization, and estrous behavior in dairy cows. Lactating Holstein cows entering their first (n = 82) or second (n = 37) lactation were enrolled at parturition and fitted with an ear-attached sensor for automated detection of estrus.
View Article and Find Full Text PDFThe objectives of this prospective cohort study were to characterize associations among genomic merit for fertility with ovarian and endocrine function and the estrous behavior of dairy cows during an entire nonhormonally manipulated estrous cycle. Lactating Holstein cows entering their first (n = 82) or second (n = 37) lactation had ear-notch tissue samples collected for genotyping using a commercial genomic test. Based on genomic predicted transmitting ability values for daughter pregnancy rate (gDPR), cows were classified into high (Hi-Fert; gDPR > 0.
View Article and Find Full Text PDF