Publications by authors named "D Drobna"

Current assays fail to address breast cancer's complex biology and accurately predict treatment response. On a retrospective cohort of 1082 female breast tissues, we develop and validate mFISHseq, which integrates multiplexed RNA fluorescent in situ hybridization with RNA-sequencing, guided by laser capture microdissection. This technique ensures tumor purity, unbiased whole transcriptome profiling, and explicitly quantifies intratumoral heterogeneity.

View Article and Find Full Text PDF

On a retrospective cohort of 1,082 FFPE breast tumors, we demonstrated the analytical validity of a test using multiplexed RNA-FISH-guided laser capture microdissection (LCM) coupled with RNA-sequencing (mFISHseq), which showed 93% accuracy compared to immunohistochemistry. The combination of these technologies makes strides in i) precisely assessing tumor heterogeneity, ii) obtaining pure tumor samples using LCM to ensure accurate biomarker expression and multigene testing, and iii) providing thorough and granular data from whole transcriptome profiling. We also constructed a 293-gene intrinsic subtype classifier that performed equivalent to the research based PAM50 and AIMS classifiers.

View Article and Find Full Text PDF

Sensitive and rapid point-of-care assays have been crucial in the global response to SARS-CoV-2. Loop-mediated isothermal amplification (LAMP) has emerged as an important diagnostic tool given its simplicity and minimal equipment requirements, although limitations exist regarding sensitivity and the methods used to detect reaction products. We describe the development of Vivid COVID-19 LAMP, which leverages a metallochromic detection system utilizing zinc ions and a zinc sensor, 5-Br-PAPS, to circumvent the limitations of classic detection systems dependent on pH indicators or magnesium chelators.

View Article and Find Full Text PDF

Although autism spectrum disorder (ASD) is mainly characterized by developmental delay in social and communication skills, it has been shown that neuromotor deficits are an early component of ASD. The neuromotor development of B6.129-Shank3tm2Gfng/J (Shank3B−/−) mice as an animal model of autism has not been analyzed yet.

View Article and Find Full Text PDF

Background: Glial fibrillary acidic protein (GFAP) in plasma is an established biomarker of traumatic brain injury (TBI) in humans. Plasma extracellular DNA (ecDNA) is a very sensitive, although nonspecific marker of tissue damage including TBI. Whether plasma GFAP or ecDNA could be used as an early non-invasive biomarker in the mouse model of closed head injury is unknown.

View Article and Find Full Text PDF