Publications by authors named "D Donnarieix"

The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131.

View Article and Find Full Text PDF

The development of alternative therapies for melanoma treatment is of great interest as long-term tumour regression is not achieved with new targeted chemotherapies on selected patients. We previously demonstrated that radioiodinated heteroarylcarboxamide ([131I]ICF01012) induced a strong anti-tumoural effect by inhibiting both primary tumour growth and dissemination process in a B16BL6 melanoma model. In our study, we show that a single injection of [131I]ICF01012 (ranging from 14.

View Article and Find Full Text PDF

Background: The place of radiosurgery (RS) as an option in the treatment of recurrent malignant glioma is still debated on in the absence of prospective randomized trials.

Objective: To assess the clinical outcome and MRI response after radiosurgery of recurrent malignant glioma.

Methods: We evaluated 50 consecutive patients treated in a single institution.

View Article and Find Full Text PDF

The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.

View Article and Find Full Text PDF

The paper describes a platform developed for the secure management and analysis of medical data and images in a grid environment. Designed for telemedicine and built upon the EGEE gLite middleware and particularly the metadata catalogue AMGA as well as the GridSphere web portal, the platform provides to healthcare professionals the capacity to upload and query medical information stored over distributed servers. A job submission environment is also available for data analysis.

View Article and Find Full Text PDF