Publications by authors named "D Doerr"

Article Synopsis
  • - Using only one linear reference genome limits the understanding of genomic diversity; the draft human pangenome shows the need for pangenomics to address these gaps and capture more genetic variation.
  • - A new tool called Panacus (pangenome-abacus) has been developed to efficiently analyze pangenomes, capable of processing large human pangenome graphs quickly, producing interactive visualizations in under an hour.
  • - Panacus is open-source and built in Rust, available for installation through Bioconda, with its source code and documentation accessible on GitHub.
View Article and Find Full Text PDF

Motivation: Using a single linear reference genome poses a limitation to exploring the full genomic diversity of a species. The release of a draft human pangenome underscores the increasing relevance of pangenomics to overcome these limitations. Pangenomes are commonly represented as graphs, which can represent billions of base pairs of sequence.

View Article and Find Full Text PDF

Reconstructing ancestral gene orders from the genome data of extant species is an important problem in comparative and evolutionary genomics. In a phylogenomics setting that accounts for gene family evolution through gene duplication and gene loss, the reconstruction of ancestral gene orders involves several steps, including multiple sequence alignment, the inference of reconciled gene trees, and the inference of ancestral syntenies and gene adjacencies. For each of the steps of such a process, several methods can be used and implemented using a growing corpus of, often parameterized, tools; in practice, interfacing such tools into an ancestral gene order reconstruction pipeline is far from trivial.

View Article and Find Full Text PDF

The comparison of large-scale genome structures across distinct species offers valuable insights into the species' phylogeny, genome organization, and gene associations. In this chapter, we review the family-free genome comparison tool FFGC that, relying on built-in interfaces with a sequence comparison tool (either BLAST+ or DIAMOND) and with an ILP solver (either CPLEX or Gurobi), provides several methods for analyses that do not require prior classification of genes across the studied genomes. Taking annotated genome sequences as input, FFGC is a complete workflow for genome comparison allowing not only the computation of measures of similarity and dissimilarity but also the inference of gene families, simultaneously based on sequence similarities and large-scale genomic features.

View Article and Find Full Text PDF

Circulating tumor cell (CTC) and tumor-derived extracellular vesicle (tdEV) loads are prognostic factors of survival in patients with carcinoma. The current method of CTC enumeration relies on operator review and, unfortunately, has moderate interoperator agreement (Fleiss' kappa 0.60) due to difficulties in classifying CTC-like events.

View Article and Find Full Text PDF