Publications by authors named "D Dini"

Engine deposits can reduce performance and increase emissions, particularly for modern direct-injection fuel delivery systems. Surfactants known as deposit control additives (DCAs) adsorb and self-assemble on the surface of deposit precursors to keep them suspended in the fuel. Here, we show how molecular simulations can be used to virtually screen the ability of surfactants to bind to polyaromatic hydrocarbons, comprising a major class of carbonaceous deposits.

View Article and Find Full Text PDF

Interstitial fluid (ISF) flow is identified as an essential physiological process that plays an important role in the development and progression of brain tumours. However, the relationship between the permeability of the tumour tissue, a complex porous medium, and the interstitial fluid flow around the tumour cells at the microscale is not well understood. To shed light on this issue, and in the absence of experimental techniques that can provide direct measurements, we develop a computational model to predict the tissue permeability of brain tumours in different grades by analysing the ISF flow at the pore scale.

View Article and Find Full Text PDF

Fluid exudation in cartilage under normal loading can be counteracted by a sliding-induced rehydration phenomenon, which has a hydrodynamic origin related to a wedge effect at the contact inlet. Similar to cartilage, hydrogels also exhibit tribological rehydration properties, and we mimic this phenomenon to restore hydration lubrication and overcome creeping. It occurs within a specific velocity range and is mainly dependent on the applied load and hydrogel network structures.

View Article and Find Full Text PDF

The rational design of dielectric fluids for immersion cooling of batteries requires a molecular-level understanding of the heat flow across the battery casing/dielectric fluid interface. Here, we use nonequilibrium molecular dynamics (NEMD) simulations to quantify the interfacial thermal resistance (ITR) between hematite and poly-α-olefin (PAO), which are representative of the outer surface of the steel battery casing and a synthetic hydrocarbon dielectric fluid, respectively. After identifying the most suitable force fields to model the thermal properties of the individual components, we then compared different solid-liquid interaction potentials for the calculation of the ITR.

View Article and Find Full Text PDF

Convection-enhanced delivery (CED) can effectively overcome the blood-brain barrier by infusing drugs directly into diseased sites in the brain using a catheter, but its clinical performance still needs to be improved. This is strongly related to the highly anisotropic characteristics of brain white matter, which results in difficulties in controlling drug transport and distribution in space. In this study, the potential to improve the delivery of six drugs by adjusting the placement of the infusion catheter is examined using a mathematical model and accurate numerical simulations that account simultaneously for the interstitial fluid (ISF) flow and drug transport processes in CED.

View Article and Find Full Text PDF