2D boron nitride (2D-BN) was synthesized by gas-source molecular beam epitaxy on polycrystalline and monocrystalline Ni substrates using gaseous borazine and active nitrogen generated by a remote plasma source. The excess of nitrogen atoms allows to overcome the thickness self-limitation active on Ni when using borazine alone. The nucleation density and the shape of the 2D-BN domains are clearly related to the Ni substrate preparation and to the growth parameters.
View Article and Find Full Text PDFThe widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2022
Germanane is a two-dimensional material consisting of stacks of atomically thin germanium sheets. It's easy and low-cost synthesis holds promise for the development of atomic-scale devices. However, to become an electronic-grade material, high-quality layered crystals with good chemical purity and stability are needed.
View Article and Find Full Text PDFSemiconductor nanoplatelets, which offer a compelling combination of the flatness of two-dimensional semiconductors and the inherent richness brought about by colloidal nanostructure synthesis, form an ideal and general testbed to investigate fundamental physical effects related to the dimensionality of semiconductors. With low temperature scanning tunnelling spectroscopy and tight binding calculations, we investigate the conduction band density of states of individual CdSe nanoplatelets. We find an occurrence of peaks instead of the typical steplike function associated with a quantum well, that rule out a free in-plane electron motion, in agreement with the theoretical density of states.
View Article and Find Full Text PDF