Publications by authors named "D Demaille"

We present a sequential growth scheme based on pulsed laser deposition, which yields dense arrays of ultrathin, match-shaped Au/CoNi nanopillars, vertically embedded in SrTiOthin films. Analysis of the magnetic properties of these nanocomposites reveals a pronounced out-of-plane anisotropy. We show that the latter not only results from the peculiar nanoarchitecture of the hybrid films but is further enhanced by strong magneto-structural coupling of the wires to the surrounding matrix.

View Article and Find Full Text PDF

We employ kinetic Monte-Carlo simulations to study the growth process of metal-oxide nanocomposites obtained via sequential pulsed laser deposition. Using Ni-SrTiO3 (Ni-STO) as a model system, we reduce the complexity of the computational problem by choosing a coarse-grained approach mapping Sr, Ti and O atoms onto a single effective STO pseudo-atom species. With this ansatz, we scrutinize the kinetics of the sequential synthesis process, governed by alternating deposition and relaxation steps, and analyze the self-organization propensity of Ni atoms into straight vertically aligned nanowires embedded in the surrounding STO matrix.

View Article and Find Full Text PDF

Just like insulators can present topological phases characterized by Dirac edge states, superconductors can exhibit topological phases characterized by Majorana edge states. In particular, one-dimensional topological superconductors are predicted to host zero-energy Majorana fermions at their extremities. By contrast, two-dimensional superconductors have a one-dimensional boundary which would naturally lead to propagating Majorana edge states characterized by a Dirac-like dispersion.

View Article and Find Full Text PDF

The growth by pulsed laser deposition of fully epitaxial nanocomposites made of Co Ni nanowires (NW) vertically self-assembled in SrBaTiO/SrTiO(001) layers is reported. The diameter of the wires can be tuned in the 1.8-6 nm range.

View Article and Find Full Text PDF

We investigated the structural, magnetic, and electronic properties of Bi2Se3 epilayers containing Fe grown on GaAs(111) by molecular beam epitaxy. It is shown that, in the window of growth parameters leading to Bi2Se3 epilayers with optimized quality, Fe atom clustering leads to the formation of FexSey inclusions. These objects have platelet shape and are embedded within Bi2Se3.

View Article and Find Full Text PDF