Publications by authors named "D Dellinger"

CRISPR gene editing and control systems continue to emerge and inspire novel research and clinical applications. Advances in CRISPR performance such as optimizing the duration of activity in cells, tissues, and organisms, as well as limiting off-target activities, have been extremely important for expanding the utility of CRISPR-based systems. By investigating the effects of various chemical modifications in guide RNAs (gRNAs) at defined positions and combinations, we find that 2'--methyl-3'-phosphonoacetate (MP) modifications can be substantially more effective than 2'--methyl-3'-phosphorothioate (MS) modifications at the 3' ends of single-guide RNAs (sgRNAs) to promote high editing yields, in some instances showing an order of magnitude higher editing yield in human cells.

View Article and Find Full Text PDF

CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence ('guide sequence') and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2'-O-methyl-3'-phosphonoacetate, or 'MP') incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes.

View Article and Find Full Text PDF

CRISPR-Cas-mediated genome editing relies on guide RNAs that direct site-specific DNA cleavage facilitated by the Cas endonuclease. Here we report that chemical alterations to synthesized single guide RNAs (sgRNAs) enhance genome editing efficiency in human primary T cells and CD34(+) hematopoietic stem and progenitor cells. Co-delivering chemically modified sgRNAs with Cas9 mRNA or protein is an efficient RNA- or ribonucleoprotein (RNP)-based delivery method for the CRISPR-Cas system, without the toxicity associated with DNA delivery.

View Article and Find Full Text PDF

An improved method for the chemical synthesis of RNA was developed utilizing a streamlined method for the preparation of phosphoramidite monomers and a single-step deprotection of the resulting oligoribonucleotide product using 1,2-diamines under anhydrous conditions. The process is compatible with most standard heterobase protection and employs a 2'-O-(1,1-dioxo-1λ(6)-thiomorpholine-4-carbothioate) as a unique 2'-hydroxyl protective group. Using this approach, it was demonstrated that the chemical synthesis of RNA can be as simple and robust as the chemical synthesis of DNA.

View Article and Find Full Text PDF

Oligodeoxyribonucleotides with phosphonoacetate or thiophosphonoacetate internucleotide linkages can be made in high yield by solid-phase synthesis and possess many advantages. They are highly stable to nucleases, water-soluble, and anionic at neutral pH. They form stable duplexes with DNA and RNA, and stimulate RNase H degradation of complementary RNA.

View Article and Find Full Text PDF