This paper describes the extension of the previously CMIP5 based high-resolution climate projections with additional ones based on the more recent climate projections from the CMIP6 experiment. The downscaling method and data processing are the same but the reference dataset is now the ERA5-Land reanalysis (compared to ERA5 previously) allowing to increase the resolution of the new downscaled projections from 0.25° x 0.
View Article and Find Full Text PDFRising temperatures can lead to the occurrence of a large-scale climatic event, such as the melting of Greenland ice sheet, weakening the AMOC and further increasing dissimilarities between current and future climate. The impacts of such an event are still poorly assessed. Here, we evaluate those impacts across megadiverse countries on 21,146 species of tetrapods and vascular plants using the pessimistic climate change scenario (RCP 8.
View Article and Find Full Text PDFStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies.
View Article and Find Full Text PDFA high-resolution climate projections dataset is obtained by statistically downscaling climate projections from the CMIP5 experiment using the ERA5 reanalysis from the Copernicus Climate Change Service. This global dataset has a spatial resolution of 0.25°x 0.
View Article and Find Full Text PDFImpacts on ecosystems and biodiversity are a prominent area of research in climate change. However, little is known about the effects of abrupt climate change and climate catastrophes on them. The probability of occurrence of such events is largely unknown but the associated risks could be large enough to influence global climate policy.
View Article and Find Full Text PDF