Background: In recent years, there has been an increasing interest in targeting human prostate tumor-associated antigens (TAAs) for prostate cancer immunotherapy as an alternative to other therapeutic modalities. However, immunologic tolerance to TAA poses a significant obstacle to effective, TAA-targeted immunotherapy. We sought to investigate whether androgen deprivation would result in circumventing immune tolerance to prostate TAA by impacting CD8 cell responses.
View Article and Find Full Text PDFThe PI3K-Akt pathway is dysregulated in the majority of solid tumors. Pharmacological inhibition of Akt is a promising strategy for treating tumors resistant to growth factor receptor antagonists due to mutations in PI3K or PTEN. We have developed allosteric, isozyme-specific inhibitors of Akt activity and activation, as well as ex vivo kinase assays to measure inhibition of individual Akt isozymes in tissues.
View Article and Find Full Text PDFA series of [1,2,4]triazolo[3,4-f][1,6]naphthyridine allosteric dual inhibitors of Akt1 and 2 have been developed. These compounds have been shown to have potent dual Akt1 and 2 cell potency. The representative compound 13 provided potent inhibitory activity against Akt1 and 2 in vivo in a mouse model.
View Article and Find Full Text PDFBackground: Dysregulated PI3K/Akt signaling occurs commonly in breast cancers and is due to HER2 amplification, PI3K mutation or PTEN inactivation. The objective of this study was to determine the role of Akt activation in breast cancer as a function of mechanism of activation and whether inhibition of Akt signaling is a feasible approach to therapy.
Methodology/principal Findings: A selective allosteric inhibitor of Akt kinase was used to interrogate a panel of breast cancer cell lines characterized for genetic lesions that activate PI3K/Akt signaling: HER2 amplification or PI3K or PTEN mutations in order to determine the biochemical and biologic consequences of inhibition of this pathway.
This letter details the attenuation of hERG in a class of Akt inhibitors through heteroatom insertions into aromatic rings. The development of a cell-active dual Akt 1 and 2 inhibitors devoid of hERG activity is discussed using structure-activity relationships.
View Article and Find Full Text PDF