Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (δO) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ) and oxygen isotope (δO) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)-based SSTs but lower than biomarker-based SSTs for the same interval.
View Article and Find Full Text PDFThe late Miocene-early Pliocene biogenic bloom was an extended time interval characterised by elevated ocean export productivity at numerous locations. As primary productivity is nutrient-limited at low-to-mid latitudes, this bloom has been attributed to an increase or a redistribution of available nutrients, potentially involving ocean-gateway or monsoon-related mechanisms. While the exact causal feedbacks remain debated, there is even less consensus on what caused the end of the biogenic bloom.
View Article and Find Full Text PDFThe International Ocean Discovery Programme (IODP) and its predecessors generated a treasure trove of Cenozoic climate and carbon cycle dynamics. Yet, it remains unclear how climate and carbon cycle interacted under changing geologic boundary conditions. Here, we present the carbon isotope (δC) megasplice, documenting deep-ocean δC evolution since 35 million years ago (Ma).
View Article and Find Full Text PDFMuch of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories.
View Article and Find Full Text PDF