MitoK is a channel of the inner mitochondrial membrane that controls mitochondrial K influx according to ATP availability. Recently, the genes encoding the pore-forming (MITOK) and the regulatory ATP-sensitive (MITOSUR) subunits of mitoK were identified, allowing the genetic manipulation of the channel. Here, we analyzed the role of mitoK in determining skeletal muscle structure and activity.
View Article and Find Full Text PDFMutations in are a major contributor to mitochondrial DNA (mtDNA) depletion syndromes, a group of inherited genetic conditions due to mtDNA instability. To investigate the role of MPV17 in mtDNA maintenance, we generated and characterized a KO model showing that the absence of dMpv17 caused profound mtDNA depletion in the fat body but not in other tissues, increased glycolytic flux and reduced lifespan in starvation. Accordingly, the expression of key genes of glycogenolysis and glycolysis was upregulated in KO flies.
View Article and Find Full Text PDFHow do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca) entry through Ca1 channels triggered Ca release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle.
View Article and Find Full Text PDFNon-thermal plasma technology is increasingly being applied in the plant biology field. Despite the variety of beneficial effects of plasma-activated water (PAW) on plants, information about the mechanisms of PAW sensing by plants is still limited. In this study, in order to link PAW perception to the positive downstream responses of plants, transgenic seedlings expressing the Ca-sensitive photoprotein aequorin in the cytosol were challenged with water activated by low-power non-thermal plasma generated by a dielectric barrier discharge (DBD) source.
View Article and Find Full Text PDF