Advancements in polymer chemistry have enabled the design of macromolecular structures with tailored properties for diverse applications. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a controlled technique for precise polymer design. Automation tools further enhance polymer synthesis by enabling the rapid, reproducible preparation of polymer libraries.
View Article and Find Full Text PDFSacrificial templating offers the ability to create interconnected pores within 3D printed filaments and to control pore morphology. Beta-tricalcium phosphate (TCP) bone tissue engineering (BTE) scaffolds were fabricated with multiscale porosity: (i) macropores from direct ink writing (DIW, a material extrusion 3D printing technique), (ii) micropores from oil templating, and (iii) smaller micropores from partial sintering. The hierarchically porous scaffolds possessed a total porosity of 58-70 %, comprising 54-63 % interconnected open pores.
View Article and Find Full Text PDFUV disinfection is extensively used for wastewater disinfection and disinfection efficiency is commonly monitored using culture-based enumeration of . While culture-independent real-time quantitative polymerase chain reaction (qPCR) based methods are attractive due to faster turnaround and easier application, previous attempts with qPCR to monitor disinfection have been unsuccessful. In this study, the effect of UV irradiation on a pure culture was examined in collimated beam (CB) experiments and monitored using both a culturing technique and DNA damage quantified using both short amplicon (SA; <∼200 bp) qPCR and longer amplicon (LA; ∼500-bp) qPCR.
View Article and Find Full Text PDF