Solution-processable near-infrared (NIR) photodetectors are urgently needed for a wide range of next-generation electronics, including sensors, optical communications and bioimaging. However, it is rare to find photodetectors with >300 kHz cut-off frequencies, especially in the NIR region, and many of the emerging inorganic materials explored are comprised of toxic elements, such as lead. Herein, solution-processed AgBiS photodetectors with high cut-off frequencies under both white light (>1 MHz) and NIR (approaching 500 kHz) illumination are developed.
View Article and Find Full Text PDFEasily deploying new vaccines globally to combat disease outbreaks has been highlighted as a major necessity by the World Health Organization. RNA-based vaccines using lipid nanoparticles (LNPs) as a drug delivery system were employed to great effect during the recent COVID-19 pandemic. However, LNPs are still unstable at room temperature and agglomerate over time during storage, rendering them ineffective for intracellular delivery.
View Article and Find Full Text PDFWe report a novel anisotropic process, termed plasma etching induced by temperature gradients (PE-TG), which we use to modify the 3D morphology of a hexagonally close-packed polystyrene sphere array. Specifically, we combined an isotropic oxygen plasma (generated by a plasma cleaner) and a vertical temperature gradient applied from the bottom to the top of a colloidal mask to create an anisotropic etching process. As a result, an ordered array of well-defined and separated nano mushrooms is obtained.
View Article and Find Full Text PDFHere, we propose an easy method for site-selective deposition of two-dimensional (2D) material flakes onto nanoholes by means of electrophoretic deposition. This method can be applied to both simple flat nanostructures and complex three-dimensional structures incorporating nanoholes. The deposition method is here used for the decoration of large ordered arrays of plasmonic structures with either a single or few layers of MoS.
View Article and Find Full Text PDFZinc oxide (ZnO) nanorods (NRs) have been demonstrated as a promising platform for enhanced fluorescence-based sensing. It is, however, desirable to achieve a tuneable fluorescence enhancement with these platforms so that the fluorescence output can be adjusted based on the real need. Here we show that the fluorescence enhancement can be tuned by changing the diameter of the ZnO nanorods, simply controlled by potassium chloride (KCl) concentration during synthesis, using arrays of previously developed aligned NRs (a.
View Article and Find Full Text PDF