Publications by authors named "D Daphna-Iken"

We previously demonstrated that insulin-induced severe hypoglycemia-associated sudden death is largely mediated by fatal cardiac arrhythmias. In the current study, a pharmacological approach was taken to explore the potential contribution of hypoglycemic seizures and the sympathoadrenergic system in mediating severe hypoglycemia-associated sudden death. Adult Sprague-Dawley rats were randomized into one of four treatment groups: 1) saline (SAL), 2) anti-arrhythmic (β blocker atenolol), 3) antiseizure (levetiracetam), and 4) combination antiarrhythmic and antiseizure (β Blocker+Levetiracetam).

View Article and Find Full Text PDF

We previously demonstrated that insulin-mediated severe hypoglycemia induces lethal cardiac arrhythmias. However, whether chronic diabetes and insulin deficiency exacerbates, and whether recurrent antecedent hypoglycemia ameliorates, susceptibility to arrhythmias remains unknown. Thus, adult Sprague-Dawley rats were randomized into four groups: ) nondiabetic (NONDIAB), ) streptozotocin-induced insulin deficiency (STZ), ) STZ with antecedent recurrent (3 days) hypoglycemia (∼40-45 mg/dL, 90 min) (STZ+RH), and ) insulin-treated STZ (STZ+Ins).

View Article and Find Full Text PDF

GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice.

View Article and Find Full Text PDF

For people with insulin-treated diabetes, severe hypoglycemia can be lethal, though potential mechanisms involved are poorly understood. To investigate how severe hypoglycemia can be fatal, hyperinsulinemic, severe hypoglycemic (10-15 mg/dL) clamps were performed in Sprague-Dawley rats with simultaneous electrocardiogram monitoring. With goals of reducing hypoglycemia-induced mortality, the hypotheses tested were that: 1) antecedent glycemic control impacts mortality associated with severe hypoglycemia; 2) with limitation of hypokalemia, potassium supplementation could limit hypoglycemia-associated deaths; 3) with prevention of central neuroglycopenia, brain glucose infusion could prevent hypoglycemia-associated arrhythmias and deaths; and 4) with limitation of sympathoadrenal activation, adrenergic blockers could prevent hypoglycemia-induced arrhythmic deaths.

View Article and Find Full Text PDF

Brain damage due to severe hypoglycemia occurs in insulin-treated people with diabetes. This study tests the hypothesis that chronic insulin therapy that normalizes elevated blood glucose in diabetic rats would be neuroprotective against brain damage induced by an acute episode of severe hypoglycemia. Male Sprague-Dawley rats were split into three groups: 1) control, non-diabetic; 2) STZ-diabetic; and 3) insulin-treated STZ-diabetic.

View Article and Find Full Text PDF