Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate.
View Article and Find Full Text PDFHerbivory is common in mammals, yet our understanding of detoxification processes used by mammals to biotransform plant secondary compounds (PSCs) is limited. Specialist herbivores are thought to have evolved detoxification mechanisms that rely more heavily on energetically cheap Phase I biotransformation reactions to process high levels of PSCs in their diets. We explored this hypothesis by comparing the urinary metabolite patterns of two specialist herbivores (genus Neotoma).
View Article and Find Full Text PDFThe incidence of urinary stone disease (USD) has increased four-fold in 50 years. Oxalate, which is degraded exclusively by gut bacteria, is an important constituent in 80% of urinary stones. We quantified the effects of antibiotics and a high fat/high sugar (HFHS) diet on the microbial metabolism of oxalate in the gut.
View Article and Find Full Text PDFWe present the de novo draft genome sequence for a vertebrate mammalian herbivore, the desert woodrat (Neotoma lepida). This species is of ecological and evolutionary interest with respect to ingestion, microbial detoxification and hepatic metabolism of toxic plant secondary compounds from the highly toxic creosote bush (Larrea tridentata) and the juniper shrub (Juniperus monosperma). The draft genome sequence and annotation have been deposited at GenBank under the accession LZPO01000000.
View Article and Find Full Text PDFThe gastrointestinal tract of the white-throated woodrat Neotoma albigula harbors a diverse microbial population that functions in the degradation of ingested plant secondary compounds. Here, we present the draft genome sequence and annotation of Clostridium sporogenes strain 8-O, a novel oxalate-degrading bacterium isolated from the feces of N. albigula.
View Article and Find Full Text PDF