Publications by authors named "D Daghero"

The iron-based superconductors (IBSs) of the recently discovered 1144 class, unlike many other IBSs, display superconductivity in their stoichiometric form and are intrinsically hole doped. The effects of chemical substitutions with electron donors are thus particularly interesting to investigate. Here, we study the effect of Co substitution in the Fe site of CaKFe4As4 single crystals on the critical temperature, on the energy gaps, and on the superfluid density by using transport, point-contact Andreev-reflection spectroscopy (PCARS), and London penetration depth measurements.

View Article and Find Full Text PDF

Transition metal dichalcogenides exhibit rich phase diagrams dominated by the interplay of superconductivity and charge density waves, which often result in anomalies in the electric transport properties. Here, we employ the ionic gating technique to realize a tunable, non-volatile organic ion intercalation in bulk single crystals of molybdenum disulphide (MoS2). We demonstrate that this gate-driven organic ion intercalation induces a strong electron doping in the system without changing the pristine 2H crystal symmetry and triggers the emergence of a re-entrant insulator-to-metal transition.

View Article and Find Full Text PDF

Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses how transition metal dichalcogenides (TMDs) can exhibit superconductivity when influenced by an electric field due to their unique two-dimensional properties.
  • Experimental findings suggest that the superconductivity in MoS is linked to a multi-valley Fermi surface, instead of just the expected two electron pockets.
  • Low-temperature transport measurements reveal that emerging superconductivity correlates with the filling of various electron pockets and changes in Fermi surface topology, pointing to new avenues for discovering superconductors.
View Article and Find Full Text PDF

Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model).

View Article and Find Full Text PDF