J Biomed Mater Res A
September 2006
Poly(L-lactic acid) (PLLA) has been used for fracture fixation devices, but its use is limited because of its poor biocompatibility and mechanical properties. The effects of extrusion, incorporation of hydroxyapatite (HA) and self-reinforced composites (SRCs) on the resultant mechanical properties of PLLA were examined. Samples were conditioned for up to 52 weeks in PBS at 37 degrees C.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2006
Femoral components of hip replacements are commonly anchored in the femur with bone cement or poly(methyl methacrylate) (PMMA). Wear or fracture of bone cement can lead to loosening of the femoral component, which drastically affects the success and longevity of hip replacements. Self-reinforced composite PMMA (SRC-PMMA) has been previously developed for potential use, as a precoat material for hip replacements.
View Article and Find Full Text PDFJ Mater Sci Mater Med
October 2005
Uniaxial self-reinforced composite poly(methyl methacrylate) (SRC-PMMA) is being investigated as a pre-coat material for the femoral component of total hip replacements. Hot compaction of self-reinforced composites is largely an empirical process which varies the processing parameters of time, temperature and pressure until the desired properties are obtained. Previous work has shown that PMMA fibers have unique thermal relaxation properties dependent upon the retained molecular orientation in them.
View Article and Find Full Text PDFPoly(lactic acid) (PLA) is used for medical devices such as sutures or orthopedic screws. A standard way to determine the loss of mechanical properties of a degradable polymer would be to soak the polymer in phosphate buffered saline (PBS) and test the desired property as a function of immersion time. This method is not sensitive enough to discern changes in mechanical properties through the cross-section of the polymer and neglects the degradation that is occurring at the molecular level.
View Article and Find Full Text PDFUnderstanding the wear characteristics of bone cement and its alternatives is critical to improving the quality and longevity of hip replacements. A novel composite material, self-reinforced composite poly(methyl methacrylate), has been previously developed for potential use as a pre-coat material for hip implants. The goal of this work was to examine the properties of self-reinforced composite poly(methyl methacrylate) as a function of processing temperature.
View Article and Find Full Text PDF