Liquid-liquid extraction is a commonly used technique to separate metals and is a process that has particular relevance to the nuclear industry. There has been a drive to use environmentally friendly ligands composed only of carbon, hydrogen, nitrogen, and oxygen. One example is the i-SANEX process that has been developed to separate minor actinides from spent nuclear fuel.
View Article and Find Full Text PDFSimple hydroxamic acids such as acteohydroxamic acid (AHA) have been identified as suitable reagents for the control of Pu and Np in advanced separation processes for nuclear fuel reprocessing such as the Advanced PUREX or UREX based recycle processes, due to their ability to strip the tetravalent form of Pu and Np from tri-butyl phosphate into nitric acid. However, both free and metal bound hydroxamates are known to undergo acid catalysed hydrolysis at low pH, the kinetics of which must be characterised before implementation of PUREX/UREX based reprocessing flowsheets. In support of this implementation, a comprehensive thermodynamic and kinetic model that describes both the complex speciation and hydrolysis of AHA in the presence of Np(iv) has been developed.
View Article and Find Full Text PDFBinding of calcium ions (Ca²⁺) to proteins can have profound effects on their structure and function. Common roles of calcium binding include structure stabilization and regulation of activity. It is known that diverse families--EF-hands being one of at least twelve--use a Dx[DN]xDG linear motif to bind calcium in near-identical fashion.
View Article and Find Full Text PDF